Intellegentia artificialis

E Vicipaedia
Salire ad: navigationem, quaerere
Asimo, robotum humanum.

Intellegentia artificialis est subdisciplina informatica quae machinas intellegentes creare studet. Disciplina intellegentiae artificialis enchiridiis hoc modo describitur: "studium et formatio actorum intellegentium",[1] ubi "actor intellegens" est systema quod confinia sua sentit et ita agit, ut successus habeat quam maximos.[2]

Ioannes McCarthy, qui anno 1956 terminum technicum artificial intelligence composuisse videtur, intellegentiam artificialem describit scientiam et artem esse machinas intellegentes faciendi.[3] Quae schola investigat notam potissimam hominum, intellegentiam (sapientiam Hominis sapientis) tam exacte describere, ut machina simulari possit.[4] Quod studium quaestiones philosophicas de natura mentis et de finibus gloriae scientiae offert: quaestiones quae mythis, fabulis, et philosophia ab ultima antiquitate examinatae sunt.[5] Intellegentia artificialis initio spem animum incitantem iniecit, deinde regressus accepit,[6] et nunc est pergravis industriae technologicae pars, quae multis in quaestionibus difficillimis informaticae solvendis adiuvit.[7]

Intellegentia artificialis in investigatione tam technica et speciali consistit, ut aliqui existimatores eam obtrectent, quod campus centifidus sit.[8] Subcampi A.I. quaedam problemata, usus quorundam instrumentorum et diuturnas opinionum contentiones complectuntur. Gravissima intellegentiae artificialis problemata pertinent ad ratiocinationem, cognitionem, praedispositionem, eruditionem, communicationem, sensus nec non rerum movendarum tractandarumque facultates.[9] Alii intellegentiam generalem (sive A.I. fortem, Anglice: "strong A.I.") consectantur,[10] alii non iam credunt fortem A.I. impetrari posse.

Intellegentia artificialis in mythis, fabulis, coniecturis[recensere | fontem recensere]

Machinae cogitantes et res artificiales in mythis Graecis apparent, ut Talus Cretensis, ut automata aurea Hephaesti, ut Galatea Pygmalionis.[11] Effigies hominum intellegentes creditae in multis societatibus antiquis aedificatae sunt, inter quas antiquissimae sunt statuae sacrae in Aegypto Graeciaque veneratae,[12][13] et machinae Yan Shi,[14] Heronis Alexandrini,[15] Al-Jazari,[16] et Wolfgangi von Kempelen.[17] Opinio vulgaris est re artificiales tamquam animantes a Gebero,[18] Iuda Loew[19] et Paracelso[20] aedificatas esse. Fabulae de illis rebus earumque fortunis factae de iisdem atque A.I. exspectationibus, timoribus, curis ethicis disserunt.[5]

Frankenstein, mythistoria a Maria Shelley scripta,[21] quaestionem pergravem ad ethicam intellegentiae artificialis pertinentem considerat: si machina intellegens creari possit, habeatne animi adfectus? si sentiat, habeatne iura hominum? Eadem quaestio in litteris rerum futurarum proponitur: Artificial Intelligence: A.I., pellicula a Stephano Spielberg facta, machinam in puerum parvulum formatam considerat cui adfectus dati sunt humani animi, et ne doloris quidem exsorti animo carebat. Haec quaestio, "iura roboti" nunc appellata, apud Institutum futuris praecipiendis Californiense[22] ponderatur, quamquam alii hanc disputationem praematuram esse credunt.[23]

Scriptores et studiosi rerum futurarum etiam sciscitantur, quae novae res impulsu intellegentiae artificialis societati pariantur. In litteris, intellegentia artificialis partes egit servi (R2D2 in pellicula Star Wars), exactoris legis (K.I.T.T. in programmate televisifico Knight Rider), comitis (Lt. Commander Data in programmate televisifico Star Trek), subiugatoris (pellicula Matrix), dictatoris (novella With Folded Hands, exterminatoris (pellicula Terminator et programma televisificum Battlestar Galactica), humanarum facultatum extensionis (manga Ghost in the Shell), servatoris humani generis (R. Daneel Olivaw in serie litterarum Foundation series). Docti autem has res consideraverunt: deminutus operariorum usus,[24] humani ingenii amplificatio,[25] humanitas et ethica nova ratione constituenda.[26]

Nonnulli rerum futurarum studiosi dicunt fore, ut intellegentia artificialis fines progressus transcendat et homines penitus transformet. Raimundus Kurzweil Lege Moore (quae exponentialem digitalis technologiae progressum mira subtilitate describit) usus existimavit anno 2029 ferme computatris mensalibus computandi vim fore instar cerebri hominis, et post annum 2045 intellegentiam artificialem eo iam loci fore, ut sese emendare ea velocitate possit, quae, quidquid umquam possit animo concipi, superet. Quae res a Vernor Vinge scriptore Singularitas technologica appellata est.[25] Eduardus Fredkin autem arguit intellegentiam artificialem esse posterum evolutionis gradum.[27] Quam opinionem a Samuele Butler libro Darwin among the Machines anno 1863 edito primum propositam Georgius Dyson anno 1998 suo libro eodem nomine inscripto amplificavit. Nonnulli futurorum studiosi et scriptores praedixerunt homines cum machinis commixtos in "cyborgos", si uti licet, sive homines cyberneticos mutatum iri, qui utroque capaciores potentioresque sint. Haec transhumanismi notio ex Aldous Huxley et Roberto Ettinger orta animum nunc refert ad Hans Moravec, machinatorem robotorum, et Kevin Warwick, cyberneticum, et Raimundum Kurzweil, inventorem.[25] Transhumanismus etiam narrationibus commenticiis inlustratus est, exempli causa dicimus mangam Ghost in the Shell appellatam et litterarum futura tractantium seriem Dune nuncupatam. Pamela McCorduck denique ex hoc scribit apparere "deos fabricandi" desiderium antiquum humanitatis.[5]

Historia investigationis intellegentiae artificialis[recensere | fontem recensere]

Medio saeculo 20, nonnulli eruditi machinas novi generis intellegentes aedificandi initium fecerunt, quae ex recentibus inventis neurologicis, ex nova theoria mathematica informationis, ex cybernetica sive gubernationis stabilitatisque scientia et praesertim, computatro digitali invento, ex machina ad humanam mathematicam ratiocinationem simulandam designata orirentur.[28]

Campus investigationis intellegentiae artificialis hodiernae in colloquio apud Collegium Dartmuthense aestate anni 1956 institutus est.[29] Omnes qui aderant duces investigationis A.I. postea exstiterunt, praesertim Ioannes McCarthy, Marvin Minsky, Allen Newell et Herbertus Simon, qui laboratorium A.I. apud MIT, CMU et Universitatem Stanfordiensem instituerunt. Illi cum discipulis suis programmata computatralia scripserunt, quibus plurimi stupuerunt:[30] problemata verborum algebraica computatris persolvebantur, theoremata logica demonstrabantur, et computatra Anglice loquebantur.[31] Usque ad medium annorum 1960, huius generis investigationes largis pecuniis per ministerium defensionis CFA comparatis factae sunt,[32] et illi, qui intererant, has praedixerunt res:

  • Simon (1965): "Viginti annis, omnia opera ab hominibus facta per machinas fient."[33]
  • Minsky (1967): "Intra aetatem hominis ... problema creandae intellegentiae artificialis re vera persolvetur."[34]

Hae praedictiones multaeque similes verae non exstiterant. Investigatores enim instantes difficultates non viderant. Anno 1974, Iacobo Lighthill, mathematico Britannico, repudiante, et Congressu CFA hortante ad pecunias fructuosioribus investigationibus dandas, regimina CFA et Britanniae omnem intellegentiae artificialis investigationem amputaverunt fundamentalem. Inde prima hiems intellegentiae artificialis.[35]

Ineuntibus annis 1980, investigatio A.I. resuscitata est mercatorio successu systematorum consiliis capiendis designatorum sive systematorum expertorum,[36] quae sunt programmata A.I. ad scientiam et artes analyticas unius aut plurium hominum expertorum simulandas confecta. Anno 1985 ineunte, mercatus A.I. plus miliardum dollariorum erat, et regimina per orbem terrarum pecuniam campo A.I. praestare coeperunt.[37] Nihilo minus, paucis annis post, mercatu machinarum Lisp anno 1987 confracto, intellegentia artificialis ad infamiam iterum tracta est. Quo facto, secunda, longior hiems A.I. incepit.[38]

Annis 1990 et ineunte saeculo 21, intellegentia artificialis successus supremos patravit, quamquam hoc aliquantum post siparium factum est. A.I. logisticam sive rerum flumina praedisponendi artem, "effossionem" notitiae, diagnosin medicam multosque alios industriae technologicae campos adiuvat.[7] Quae prosperitates multis rebus effectae sunt, sicut computandi vi computatrorum modernorum (vide Legem Moorianam), maiore cura in subproblematis particularibus adseverate persolvendis suscepta, necessitudinibus novis inter intellegentiam artificialem et consimilia studia coniunctis, et praesertim ideo, quod investigatores solidis methodis mathematicis pergravibusque regulis scientificis se addixerunt.[39]

Philosophia A.I.[recensere | fontem recensere]

Intellegentia artificialis, cum se facultates mentis humanae recreare posse adfirmat, et provocatrix et inspiratrix philosophiae exstitit. Certisne finibus, quam intellegentes esse possint machinae, circumscribi potest? Verumne discrimen inter intellegentiam hominis et intellegentiam machinae est an non? Utrum machina mentem animamque habet an non? Haec sunt nonnulla responsa potiora:[40]

"Comis conventio" ab Alano Turing proposita
Machina aliqua, si aeque intellegenter agit atque homo aliqui, intellegentia hominem aequat. Turing enim docuit nos intellegentiam machinae postremo nullo modo nisi actionibus eiusdem diiudicare posse. Qua in theoria consistit examen Turing.[41]
Propositio Dartmuthensis
Omnis discendi modus aut quaelibet alia intellegendi proprietas tam exacte describi potest, ut machina simulari possit. Haec adfirmatio in propositione ad Conventum Dartmuthense demonstrata anno 1956 impressa est, quae etiam est opinio plurimorum investigatorum in intellegentia artificiali operosorum.[4]
Hypothesis systematis symbolorum physicorum a Newell et Simon proposita
Systema symbolorum physicorum facultates necessarias et sufficientes ad actionem intellegentem generalem habet. Quae coniectura postulat intellegentiam tractatione symbolorum constare. Hubertus Dreyfus contra arguit scientiam hominis a naturae instinctu quodam inscio potius quam a conscia symbolorum tractatione dependere.[42][43]
Theorema imperfectionis Gödel
Systema formale (ut programma computatrale) omnes propositiones veras confirmare non potest. Rogerius Penrose est unus inter multos, qui hoc theoremate actiones machinarum finiri adfirmant.[44][45]
Hypothesis intellegentiae artificialis fortis a Searle proposita
Computatrum, si rectis initibus exitibusque proprie programmetur, mentem habeat instar mentis humanae.[46] Searle hanc hypothesin refutat suo ad conclave Sinense argumento, quo nos, intra computatrum videamus et "mentem" reperire conemur, hortatur.[47]
Argumentum ex cerebro facticio
Cerebrum simulari potest. Hans Moravec, Raimundus Kurzweil et alii adfirmaverunt artificio fieri posse, ut cerebrum simpliciter in armaturam et programma transcribatur, et illud simulamen reapse par cerebro germano sit.[48]

Problemata A.I.[recensere | fontem recensere]

Investigatio ad intellegentiam artificialem pertinens saeculi 21 in subcampos instituta, investigatores, quaestiones, instrumenta complexos divisa est, qui inter se vix colloquuntur.

Opus intellegentiae simulandae in multa opuscula specialia dissolutum est, quae in proprietatibus facultatibusve consistunt, quas investigatores systemati intellegenti esse volunt. Proprietates infra descriptae plurimorum animos attenderunt:[9]

Deductio rationalis, ratiocinatio, problemata persolvenda[recensere | fontem recensere]

Initio investigatores A.I. algorithmos creaverunt, qui gradatim ratiocinationem imitarentur, qua homines problemata persolventes, ludos mensales ludentes vel deductionem rationalem adhibentes utantur. [49] Exeuntibus annis 1980 et ineuntibus 1990, ab investigatoribus notionibus probabilitatis et oeconomiae usis methodi valde efficaces creatae erant, quae informationem inperfectam vel incertam attingerent. [50]

Ad problemata aegre persolvenda plurimi algorithmorum ingentes opes computatrales requirunt — plurimi inordinata rerum combinandarum accretione laborant: cum problema quoddam certam magnitudinem excedit, inopia memoriae capacitatis aut temporis computatralis ingentissima fit. Indagatio algorithmorum, quibus problemata efficacius persolvantur, maximi momenti est in investigatione intellegentiae artificialis.[51]

Homines plurima problematum suorum potius intuitivis velocibusque iudiciis solvunt quam conscia ratiocinatione, cuius gradus ab investigatoribus A.I. initio formari potuerunt. [52]

Intellegentia artificialis aliquantum profecit in simulando huiusmodi "subsymbolicas" quaestionum solutiones: quiqui ea, quae agente corporeo constat, methodo utuntur adfirmant sollertias sensorimotrices magni interesse superioris ratiocinationis; retium autem neuralium studiosi conantur simulare structuras in humani et animali cerebro intimas, e quibus haec sollertiae genera oriuntur.

Icon apps query.svg
Haec pagina scripta est a tirone, qui nondum Latinitate callidissima utitur.
Usor Latinitatis callidior textum inspiciat, errores corrigat resque auctori explicet.

Descriptio scientiae[recensere | fontem recensere]

Descriptio scientiae[53] et ars scientiae[54] est investigationi A.I gravissimus. Problemata numerosa a machinae persolvi scientia magna de mundo requirunt. Res ab A.I. descriptare requirens pertinent ad res corporeas, qualitates, categorias et adfinitates inter res;[55] status, eventus, circumstantias et tempus;[56] causas consequentesque;[57] scientiam de scientia (id quod scit de quo alii sciunt);[58] et dominia alia numerosa tenuatim investigum. Descriptio tota de "eo quod est" ontologiam (terminologiam ex philosophia mutuaticus) vocant, cuius maxime generalis est ontologia supera.

Hi sunt nonnulla problemata difficilima in descriptione scientiae:

Ratiocinatio residens et problema de necessitudes
Multa scientiae hominum "sumptionibus prudentibus" consistit. Per exemplum, si in collocutione avem mentionem habet, plerumque de animale cantante, volante, et tam amplum quam pugnus meminerunt. Nullus illorum est verus avibus omnibus. Ioannes McCarthy illud problema anno 1969[59] ut problema de necessitudes cognovit: quaeque norma prudentis ab investigatore proponit, plerumque est exceptiones numerosae plerae. Paene nullus est aut verus aut falsus in modo logica abstracta requirens. Investigatio A.I. solutiones numeras illius problematis exploraverunt.[60]
Latitudo scientiae vulgaris
Numerus rerum singularum ab homine mediocri scitus est ingens. Molimenta enthecam totam scientiae vulgaris molire attentantes (e.g. Cyc) quantitates ingentes artis ontologicae laboriosae requirunt -- illae enthecae manus moliendus sunt, notione rerum plectilis singulis.[61] Unum destinatum maius est computatrum numerum rerum sufficientem comprehens ut fontibus (e.g. Interrete) legente resciscat etiam ontologiae propriae suae addat.
Forma subsymbolica nonnullae scientiae vulgaris
Plurima scientiae hominum ut res vel propositiones enuntiari non possunt. Per exemplum, doctus scaccorum quandam positiones scaccorum aversatur quia "periculosus nimis sentit";[62] existimator artis sculpturatus ad sculpturam aspicit, protinus est imitatum sciens.[63] Illi sunt cogitationes intuitivae et proclivitates in cerebro inscii subsymboliciique descripti.[64] Illa scientia ad scientiam symbolicam consciamque admonent et adiuvant, et ad eandem circumiacentia praevident. Ut problemate cognatum ratiocinatione subsymbolicum, expectatio est de A.I. situata vel intellegentia computatria modos illam scientiam describentem praevidet.[64]

Praedispositio[recensere | fontem recensere]

Actoribus intellegentiis calces definiendi et eaedem pervincendi sunt.[65] Illis res futuri praedicendi (illis status mundi describendi et mutationes illius status propter actiones sese praedicendi) et actio valorem quam maxime augens optandi sunt.[66]

In nonnullis problematibus de praedispositione, actor idem esse res solus in mundum agens praesumit, ita consequentes actiones sui sunt clara.[67] At si illa adsumptio est falsa, illi actori status mundi cum praedictionibus sese aequipere nonnumquam confirmandus et praedispositiones ut necesse mutandus est; actori sub incerta ratiocinandus est.[68]

Praedispositio actoris multorum actores multis cooperantibus contendentibusque calcem quendam pervincit. Algorithmi evolutionum et intellegentia gregis illa tractatione emergente utitur.[69]

Eruditio[recensere | fontem recensere]

Eruditio machinae ab initio investigationem A.I. complexit.[70] Eruditio ingubernationis est habilitas regulas reperientis in fluvio datorum. Eruditio gubernationis et ad partitionem (decernens quid categoriam quisquam adpertinet, post videntem exempla rerum ex categoriis nonnullis) et ad regressionem (decernens functionem continuam, post videntem exempla inituum exituumque, exitus ex initibus ingenerans) pertinet. In eruditione corroborationis,[71] actor pro responso bono remuneratur, et pro responso malo punitur. Illos algorithmos theoria optationis in conceptis ut utilitas edisserere potest. Disserens mathematicus algorithmorum eruditionis machinae et efficacia eorum est subcampus informaticae theoricae qui theoriam eruditionis computationis vocant.

Procedens linguae naturalis[recensere | fontem recensere]

Procedens linguae naturalis[72] machinae linguas quae ab hominibus dicuntur legere intellegereque admittit. Multi investigatores systema satis potentem procedentis linguae naturalis scientiam pro sese lectiones ibi in Interrete legente acquirere expectant. Nonnullus usus simplices procedentis linguae naturalis ad reparantem informationis (i.e. effodientem lectionum) et translationem mechanica pertinent.[73]

Motio et tractatio[recensere | fontem recensere]

Asimo instrumentis sensoriis algorithmesque intellegentum impedimenta fugit scalarumque navigat.

Campus roboticae[74] ad A.I. est adfinis. Roboti intellegentiam requirunt ut partes ut tractationem[75] navigationemque agerent. Subproblemata sunt locatio (sciens ubi eras), faciens tabulae loci (erudiens quid eras apud te), et motionem praedispositio (comperiens quo modo ibidem ibas).[76]

Sentio[recensere | fontem recensere]

Sentio mechanica[77] est habilitas initus ex machinationibus sentientibus utentis (e.g. machinationes videntes, machinationes audientes, "sonar", et al.) ut statum mundi colligeret. Visio mechanica[78] est habilitas initus visus intellegentis. Nonnulli subproblemata ad loquelam agnoscentem,[79] facium agnoscentem, et rem agnoscentem[80] pertinet.

Intelligentia socialis[recensere | fontem recensere]

Kismet est robotus cum habilitates socialum primitivae.

Motiones animi et habilitas socialis in duam modos pro actoribus intellegentiis agunt:[81]

  • Actor actiones aliarum causas eos et status motionum animorum eos intellegente praedicendus est. Ille ad partes theoriae ludorum, theoriam optationis, habilitatem intellegantis motiones animorum hominum, et habilitatem detegentis motiones animorum pertinet.
  • Pro interactio bona inter homines machinaeque, machina intellegentia motiones animi ostendendus est. Certe illa machina et benignam et sensilem ad homines cum ea interagentes adparendus. Optume, illa machina motiones animi hominis habeat.

Habilitas generabilis[recensere | fontem recensere]

Topio est robotum ping-pong ludens, a TOSY aedificatus est.

Hic subcampus A.I. habilitatem generabilis theoria (philosophia psychologiaque) et arte (aedificante systemas ingenerantia emissiones quae generabilis esse agnoscuntur) investigat.

Intellegentia generalis[recensere | fontem recensere]

Plurimus investigatori investigationes eos ad machinam cum intellegentia generalis (sive A.I. forte) conducturus esse exspectant; illa machina omnes habilitates supra colligeret, habilitates homines in plurima vel omne excedens.[10] Nonnullus necessitatem esse notas anthropomorphicas ut conscientiam artificialem vel cerebrum artificialem creditant.[82]

Multa problematum supra totam A.I. esse creditantur: si unam problematem persolvenda est, omna problemates persolvendas sunt. Per exemplum, translatio mechanica machinam argumentum auctorem intellegere (i.e. ratiocinari), quo loquuntur scire (i.e. scientia habere), et intentionem auctorem bene transferare (i.e. intellegentiam socialem habere) requirit. Ita, translatio mechanica totam A.I. creditantur: illa pars A.I. fortem requirere potest ut illa pars ut bene quam homine ageretur.[83]

Stratagemata ad A.I.[recensere | fontem recensere]

Theoria vel paradigma tota rata investigationes A.I. ducens non est. Investigatori de numero problematum discordant.[84] Hi sunt nonnullus quaestiones diuturnae etiamnunc non responsi sunt: Utrum A.I. psychologiam vel neurologiam studente cerebrum naturale simulet? an biologia hominum est tam super investigationum A.I. quam biologia avium super artem aëronauticam?[85] Utrum actiones intellegentiae principiis simplicibus elegantibusque (ut logica vel valorem increscente) describi possunt? an illis numerum magnum problematum extrana persolvere requirunt?[86] Utrum intellegentia symbolis superis (ut verbis vel conceptis) simulari potest? an illa descriptionem subsymbolicam requirit?[87]

Cybernetica et cerebri simulans[recensere | fontem recensere]

Cerebrum hominis investigatores A.I. inspirant, quamquam de quam apte idem simularetur consensus non est.

Per annos 1940 et 1950, nonnulli investigatores cognationes inter neurologiam, theoriam informationis et cyberneticam exploravit. Nonnullus machinas retibus electronicis exhibentes intellegentiam primitivam aedificavit, ut testudines de W. Gray Walter et Johns Hopkins Beast. Multus ex illibus investigatoribus in Societatem Teleologica apud Universitas Princeton, et in Societatem Ratio apud Angliam congressi sunt.[28] Ad annos 1960, illa stratagema partim derelicta est, quamquam partes in annos 1980 restituti sunt.

A.I. symbolica ex instituto[recensere | fontem recensere]

Cum accessu ad computatrum digitale medio annorum 1950, investigatores notionem intellegentiam hominis ad tractationem symbolorum redigi sit explorare inceperunt. Hic investigatio apud tria institutiones complecta est: CMU, Universitatem Stanfordiensis, et MIT. Omnes stilum proprium investigationis explicaverunt. Ioannes Haugeland hos aditus ad A.I. "A.I. patria bona" (Anglice: "good old-fashioned A.I."), sive GOFAI (acronymum Anglicum), nominavit.[88]

Cognitionem simulans
Herbertus Simon oeconomus et Alanus Newell habilitates hominum problematis persolventis studuerunt illasque mathematice describere attemptaverunt. Labores sui campum A.I. ac scientiam cognitionis, investigationem operationis, et scientiam administrationis instituerunt. Manus suus investigationum experimenta psychologicas ut similitudinem inter problemata persolventem hominum programmasque quae scribebant (e.g. "General Problem Solver" -- Anglice; Latine "Persolvator Problematum Generalum" -- suas) demonstrarent. Hic aditus, apud CMU complectentem, in aedificio "Soar" medio annorum 1980 tandem evenerit.[89][90]
A.I. logica
Ioannes McCarthy, a Newell Simonque dissentiens, machinas ratiocinationem hominis simulantes non require, autem essentiam ratiocinationis logicae persolventisque problematum exquirere neglegentem utrum homines algorithmos similes uti debere, credidit.[85] Laboratorium suum apud Universitatem Stanfordiensis, SAIL, logicum formale usa sunt ut multa problemata, ut descriptionem scientiae, praedispositionem, et eruditionem, persolverent.[91] Logicum apud Universitatem Edinburgensis alibique in Europam adsumpta est, cedens ad genesem linguae computatralis Prolog scientiamque programmantis logica.[92]
A.I. symbolica "inculta"
Investigatores apud MIT (ut Marvin Minksy et Seymour Papert)[93] problemata difficilia in visionem procedentemque linguae naturalis persolventia solutiones proprias tumultuariasque (ad-hoc vocant) requirere reppererunt; illi doctrinam facilis generalisque (ut logicam) omnia spectus intellegentiae amplectens non esse putant. Rogerus Schank aditus "anti-logicas" illorum "scruffy" (Anglice; Latine: "incultam") (in oppositionem cum aditus "neat" (Anglice; Latine: "culta") apud CMU et Universitatem Stanfordiensis) nominavit.[86] Enthecae scientiae vulgaris (ut Cyc de Duglassio Lenat) sunt exempla intellegentiae artificialis incultae, quia manu concepte intricato singulare moliendae sunt.[94]
A.I. ex scientia
Cum computatria cum memoria magna circa annum 1970 praebuerunt, investigatores ab omnibus tres consuetudinibus scientiam in programmas A.I. moliri inceperint.[95] Hic "novae res scientiae" systemas expertas (ab Eduardus Feigenbaum inceptus est), quae erat prima forma vere victoriosa A.I., molientes impetravit.[36] Novae res scientae multam programmam A.I. faciles copiam ingentem scientiae requirere apprehenso item impetratus est.


Verba quae insequuntur vicificanda sunt ut rationibus qualitatis et Latinitatis propositis obtemperent. Quaesumus emenda.

Vide etiam[recensere | fontem recensere]

Nexus externi[recensere | fontem recensere]

Commons-logo.svg Vicimedia Communia plura habent quae ad intellegentiam artificialem spectant.

Notae[recensere | fontem recensere]

  1. Poole, Mackworth, et Goebel 1998, p. 1 (ubi "computational intelligence" intellegentiam artificialem significat); item fere Nilsson (1998) et Russell et Norvig 2003.
  2. Russell & Norvig (2003).
  3. Ioannes McCarthy, What is Artificial Intelligence?.
  4. 4.0 4.1 Dartmouth proposal: McCarthy et al. 1955.
  5. 5.0 5.1 5.2 This is a central idea of Pamela McCorduck's Machines That Think. She writes: "I like to think of artificial intelligence as the scientific apotheosis of a venerable cultural tradition." (McCorduck 2004, p. 34) "Artificial intelligence in one form or another is an idea that has pervaded Western intellectual history, a dream in urgent need of being realized." (McCorduck 2004, p. xviii) "Our history is full of attempts—nutty, eerie, comical, earnest, legendary and real—to make artificial intelligences, to reproduce what is the essential us—bypassing the ordinary means. Back and forth between myth and reality, our imaginations supplying what our workshops couldn't, we have engaged for a long time in this odd form of self-reproduction." (McCorduck 2004, p. 3) She traces the desire back to its Hellenistic roots and calls it the urge to "forge the Gods." (McCorduck 2004, p. 340-400).
  6. ALPAC report (1966), derelictio perceptrorum (1970), Lighthill Report (1973), mercatus machinarum LISP conlapsus (1987).
  7. 7.0 7.1 De rebus post siparium in usum conlatis: Russell & Norvig 2003, p. 28; Kurzweil 2005, p. 265; NRC 1999, pp. 216-222.
  8. Fractioning of AI into subfields:
    • McCorduck 2004, pp. 421-425
  9. 9.0 9.1 This list of intelligent traits is based on the topics covered by the major AI textbooks, inter quos:
    • Russell & Norvig 2003
    • Luger & Stubblefield 2004
    • Poole, Mackworth & Goebel 1998
    • Nilsson 1998
  10. 10.0 10.1 General intelligence (strong AI) is discussed in popular introductions to AI:
    • Kurzweil 1999
    • Kurzweil 2005
  11. AI in Myth:
    • McCorduck 2004, p. 4-5
    • Russell & Norvig 2003, p. 939
  12. Sacred statues as artificial intelligence:
    • Crevier (1993, p. 1) (statue of Amun)
    • McCorduck (2004, pp. 6-9)
  13. These were the first machines to be believed to have true intelligence and consciousness. Hermes Trismegistus expressed the common belief that with these statues, craftsman had reproduced "the true nature of the gods", their sensus and spiritus. McCorduck makes the connection between sacred automatons and Mosaic law (developed around the same time), which expressly forbids the worship of robots (McCorduck 2004, pp. 6-9)
  14. Needham 1986, p. 53
  15. McCorduck 2004, p. 6
  16. "A Thirteenth Century Programmable Robot". Shef.ac.uk. 2007 
  17. McCorduck 2004, p. 17
  18. Takwin: O'Connor, Kathleen Malone (1994). "The alchemical creation of life (takwin) and other concepts of Genesis in medieval Islam". University of Pennsylvania 
  19. Golem: McCorduck 2004, p. 15-16, Buchanan 2005, p. 50
  20. McCorduck 2004, p. 13-14
  21. McCorduck (2004, p. 190-25) discusses Frankenstein and identifies the key ethical issues as scientific hubris and the suffering of the monster, i.e. robot rights.
  22. Robot rights:
  23. See the Times Online, Human rights for robots? We’re getting carried away
  24. Russell & Norvig (2003, p. 960-961).
  25. 25.0 25.1 25.2 Singularitas technologica, transhumanism: Kurzweil 2005; Russell & Norvig 2003, p. 963.
  26. De Iosepho Weizenbaum intellegentiae artificialis aestimatore: Weizenbaum 1976; Crevier 1993, pp. 132−144; McCorduck 2004, pp. 356-373; Russell & Norvig 2003, p. 961. Weizenbaum enim anno 1976 putavit abusu intellegentiae artificialis effici, ut vita humana despiciatur.
  27. Quoted in McCorduck (2004, p. 401)
  28. 28.0 28.1 AI's immediate precursors: McCorduck 2004, 51-107; Crevier 1993, 27-32; Russell & Norvig 2003, 15,940; Moravec 1988, 3. Among the researchers who laid the foundations of the theory of computation, cybernetics, information theory and neural networks were Alan Turing, John Von Neumann, Norbert Weiner, Claude Shannon, Warren McCullough, Walter Pitts and Donald Hebb.
  29. Dartmouth conference: McCorduck, pp. 111-136; Crevier 1993, pp. 47-49; Russell & Norvig 2003, p. 17; NRC 1999, pp. 200-201
  30. Russell and Norvig write "it was astonishing whenever a computer did anything kind of smartish." Russell & Norvig 2003, p. 18
  31. "Golden years" of AI (successful symbolic reasoning programs 1956-1973): McCorduck, pp. 243-252; Crevier 1993, pp. 52-107; Moravec 1988, p. 9; Russell & Norvig 2003, p. 18-21. The programs described are Daniel Bobrow's STUDENT, Newell and Simon's Logic Theorist and Terry Winograd's SHRDLU.
  32. DARPA pours money into undirected pure research into AI during the 1960s: McCorduck 2005, pp. 131; Crevier 1993, pp. 51, 64-65; NRC 1999, pp. 204-205.
  33. Simon 1965, p. 96 quoted in Crevier 1993, p. 109.
  34. Minsky 1967, p. 2 quoted in Crevier 1993, p. 109.
  35. Prima hiems AI: Crevier 1993, pp. 115-117; Russell & Norvig 2003, p. 22; NRC 1999, pp. 212-213; Howe 1994.
  36. 36.0 36.1 Systemata experta: ACM 1998, I.2.1; Russell & Norvig 2003, pp. 22−24; Luger & Stubblefield 2004, pp. 227-331; Nilsson 1998, chpt. 17.4; McCorduck 2004, pp. 327-335, 434-435; Crevier 1993, pp. 145-62, 197−203.
  37. Boom of the 1980s: rise of expert systems, Fifth Generation Project, Alvey, MCC, SCI: McCorduck 2004, pp. 426-441; Crevier 1993, pp. 161-162, 197-203, 211, 240; Russell & Norvig 2003, p. 24; NRC 1999, pp. 210-211.
  38. Hiems A.I. secunda: McCorduck 2004, pp. 430-435; Crevier 1993, pp. 209-210; NRC 1999, pp. 214-216
  39. Formal methods are now preferred ("Victory of the neats"): Russell & Norvig 2003, pp. 25-26; McCorduck 2004, pp. 486-487
  40. All of these positions below are mentioned in standard discussions of the subject, such as: Russell & Norvig 2003, pp. 947-960; Fearn 2007, pp. 38-55.
  41. Philosophical implications of the Turing test: Turing 1950; Haugeland 1985, pp. 6-9; Crevier 1993, p. 24; Russell & Norvig 2003, pp. 2-3 and 948.
  42. Dreyfus criticized the necessary condition of the physical symbol system hypothesis, which he called the "psychological assumption": "The mind can be viewed as a device operating on bits of information according to formal rules". (Dreyfus 1992, p. 156)
  43. Dreyfus' Critique of AI: Dreyfus 1972; Dreyfus & Dreyfus 1986; Russell & Norvig 2003, pp. 950-952; Crevier 1993, pp. 120-132.
  44. This is a paraphrase of the important implication of Gödel's theorems.
  45. The Mathematical Objection: Russell & Norvig 2003, p. 949; McCorduck 2004, p. 448-449; Refuting Mathematical Objection: Turing 1950 under “(2) The Mathematical Objection” Hofstadter 1979. Making the Mathematical Objection: Lucas 1961; Penrose 1989. Background: Gödel 1931, Church 1936, Kleene 1935, Turing 1937.
  46. This version is from Searle (1999), and is also quoted in Dennett 1991, p. 435. Searle's original formulation was "The appropriately programmed computer really is a mind, in the sense that computers given the right programs can be literally said to understand and have other cognitive states." (Searle 1980, p. 1). Strong AI is defined similarly by Russell & Norvig (2003, p. 947): "The assertion that machines could possibly act intelligently (or, perhaps better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that machines that do so are actually thinking (as opposed to simulating thinking) is called the 'strong AI' hypothesis."
  47. Argumentum ad conclave Sinense a Searle propositum: Searle 1980; Searle 1991; Russell & Norvig 2003, pp. 958-960; McCorduck 2004, pp. 443-445; Crevier 1993, pp. 269-271.
  48. Cerebrum facticium: Moravec 1988; Kurzweil 2005, p. 262; Russell Norvig, p. 957; Crevier 1993, pp. 271 and 279. The most extreme form of this argument (the brain replacement scenario) was put forward by Clark Glymour in the mid-70s and was touched on by Zenon Pylyshyn and John Searle in 1980. Daniel Dennett sees human consciousness as multiple functional thought patterns; see "Consciousness Explained".
  49. De problematis aenigmatisque solvendis, lusibus ac deductione: Russell & Norvig 2003, chpt. 3-9; Poole et al. chpt. 2,3,7,9; Luger & Stubblefield 2004, chpt. 3,4,6,8; Nilsson, chpt. 7-12.
  50. Ratiocinatio incerta: Russell & Norvig 2003, pp. 452-644; Poole, Mackworth & Goebel 1998, pp. 345-395; Luger & Stubblefield 2004, pp. 333-381; Nilsson 1998, chpt. 19.
  51. De his rebus, v. Russell & Norvig 2003, pp. 9, 21-22
  52. Ex scientia cognitiva multa exempla notissima adlata sunt:
    • Wason (1966) demonstravit hominibus male contigisse, ut quaestiones perquam abstractas persolverent. Sin autem quaestio ita restituta erit, ut locus intellegentiae intuitivae sociali daretur, rei gerendae facultas valde augescet.
    • Tversky, Slovic & Kahnemann (1982) demonstraverunt homines inertes esse in solvendis quaestionibus simplicibus, quae incertam poscunt ratiocinationem.
    • Lakoff & Núñez (2000) affirmaverunt, non sine controversia, etiam artem mathematicam a scientia quadam e corpore oriunda (id est: a sollertia sensorimotrice et perceptuali) pendere.
  53. Knowledge representation:
    • ACM 1998, I.2.4,
    • Russell & Norvig 2003, pp. 320-363,
    • Poole, Mackworth & Goebel 1998, pp. 23-46, 69-81, 169-196, 235-277, 281-298, 319-345,
    • Luger & Stubblefield 2004, pp. 227-243,
    • Nilsson 1998, chpt. 18
  54. Knowledge engineering:
    • Russell & Norvig 2003, pp. 260-266,
    • Poole, Mackworth & Goebel 1998, pp. 199-233,
    • Nilsson 1998, chpt. ~17.1-17.4
  55. Representing categories and relations: Semantic networks, description logics, inheritance (including frames and scripts):
    • Russell & Norvig 2003, pp. 349-354,
    • Poole, Mackworth & Goebel 1998, pp. 174-177,
    • Luger & Stubblefield 2004, pp. 248-258,
    • Nilsson 1998, chpt. 18.3
  56. Representing events and time:Situation calculus, event calculus, fluent calculus (including solving the frame problem):
    • Russell & Norvig 2003, pp. 328-341,
    • Poole, Mackworth & Goebel 1998, pp. 281-298,
    • Nilsson 1998, chpt. 18.2
  57. Causal calculus:
    • Poole, Mackworth & Goebel 1998, pp. 335-337
  58. Representing knowledge about knowledge: Belief calculus, modal logics:
    • Russell & Norvig 2003, pp. 341-344,
    • Poole, Mackworth & Goebel 1998, pp. 275-277
  59. McCarthy & Hayes 1969. While McCarthy was primarily concerned with issues in the logical representation of actions, Russell & Norvig 2003 apply the term to the more general issue of default reasoning in the vast network of assumptions underlying all our commonsense knowledge.
  60. Default reasoning and default logic, non-monotonic logics, circumscription, closed world assumption, abduction (Poole et al. places abduction under "default reasoning". Luger et al. places this under "uncertain reasoning"):
    • Russell & Norvig 2003, pp. 354-360,
    • Poole, Mackworth & Goebel 1998, pp. 248-256, 323-335,
    • Luger & Stubblefield 2004, pp. 335-363,
    • Nilsson 1998, ~18.3.3
  61. Breadth of commonsense knowledge:
    • Russell & Norvig 2003, p. 21,
    • Crevier 1993, pp. 113-114,
    • Moravec 1988, p. 13,
    • Lenat & Guha 1989 (Introduction)
  62. Dreyfus & Dreyfus 1986
  63. Gladwell 2005
  64. 64.0 64.1 Expert knowledge as embodied intuition:
    • Dreyfus & Dreyfus 1986 (Hubert Dreyfus is a philosopher and critic of AI who was among the first to argue that most useful human knowledge was encoded sub-symbolically.)
    • Gladwell 2005 (Gladwell's Blink is a popular introduction to sub-symbolic reasoning and knowledge.)
    • Hawkins 2005 (Hawkins argues that sub-symbolic knowledge should be the primary focus of AI research.)
  65. Planning:
    • ACM 1998, ~I.2.8,
    • Russell & Norvig 2003, pp. 375-459,
    • Poole, Mackworth & Goebel 1998, pp. 281-316,
    • Luger & Stubblefield 2004, pp. 314-329,
    • Nilsson 1998, chpt. 10.1-2, 22
  66. Information value theory:
    • Russell & Norvig 2003, pp. 600-604
  67. Classical planning:
    • Russell & Norvig 2003, pp. 375-430,
    • Poole, Mackworth & Goebel 1998, pp. 281-315,
    • Luger & Stubblefield 2004, pp. 314-329,
    • Nilsson 1998, chpt. 10.1-2, 22
  68. Planning and acting in non-deterministic domains: conditional planning, execution monitoring, replanning and continuous planning:
    • Russell & Norvig 2003, pp. 430-449
  69. Multi-agent planning and emergent behavior:
    • Russell & Norvig 2003, pp. 449-455
  70. Alan Turing discussed the centrality of learning as early as 1950, in his classic paper Computing Machinery and Intelligence. (Turing 1950)
  71. Reinforcement learning:
    • Russell & Norvig 2003, pp. 763-788
    • Luger & Stubblefield 2004, pp. 442-449
  72. Natural language processing:
    • ACM 1998, I.2.7
    • Russell & Norvig 2003, pp. 790-831
    • Poole, Mackworth & Goebel 1998, pp. 91-104
    • Luger & Stubblefield 2004, pp. 591-632
  73. Applications of natural language processing, including information retrieval (i.e. text mining) and machine translation:
    • Russell & Norvig 2003, pp. 840-857,
    • Luger & Stubblefield 2004, pp. 623-630
  74. Robotics:
    • ACM 1998, I.2.9,
    • Russell & Norvig 2003, pp. 901-942,
    • Poole, Mackworth & Goebel 1998, pp. 443-460
  75. Moving and configuration space:
    • Russell & Norvig 2003, pp. 916-932
  76. Robotic mapping (localization, etc):
    • Russell & Norvig 2003, pp. 908-915
  77. Machine perception:
    • Russell & Norvig 2003, pp. 537-581, 863-898
    • Nilsson 1998, ~chpt. 6
  78. Computer vision:
    • ACM 1998, I.2.10
    • Russell & Norvig 2003, pp. 863-898
    • Nilsson 1998, chpt. 6
  79. Speech recognition:
    • ACM 1998, ~I.2.7
    • Russell & Norvig 2003, pp. 568-578
  80. Object recognition:
    • Russell & Norvig 2003, pp. 885-892
  81. Emotion and affective computing:
    • Minsky 2007
    • Picard 1997
  82. Gerald Edelman, Igor Aleksander and others have both argued that artificial consciousness is required for strong AI. CITATION IN PROGRESS Ray Kurzweil, Jeff Hawkins and others have argued that strong AI requires a simulation of the operation of the human brain. CITATION IN PROGRESS
  83. AI complete: Shapiro 1992, p. 9
  84. Nils Nilsson writes: "Simply put, there is wide disagreement in the field about what AI is all about." (Nilsson 1983, p. 10)
  85. 85.0 85.1 Biological intelligence vs. intelligence in general:
    • Russell & Norvig 2003, pp. 2-3, who make the analogy with aeronautical engineering.
    • McCorduck 2004, pp. 100-101, who writes that there are "two major branches of artifical intelligence: one aimed at producing intelligent behavior regardless of how it was accomplioshed, and the other aimed at modeling intelligent processes found in nature, particularly human ones."
    • Kolata 1982, a paper in Science, which describes McCathy's indifference to biological models. Kolata quotes McCarthy as writing: "This is AI, so we don't care if it's psychologically real"[1]. McCarthy recently reiterated his position at the AI@50 conference where he said "Artificial intelligence is not, by definition, simulation of human intelligence" (Maker 2006).
  86. 86.0 86.1 Neats vs. scruffies:
    • McCorduck 2004, pp. 421-424, 486-489
    • Crevier 1993, pp. 168
    • Nilsson 1983, pp. 10-11
  87. Symbolic vs. sub-symbolic AI:
    • Nilsson (1998, p. 7), who uses the term "sub-symbolic".
  88. Haugeland 1985, pp. 112-117
  89. Cognitive simulation, Newell and Simon, AI at CMU (then called Carnegie Tech):
    • McCorduck 2004, pp. 139-179, 245-250, 322-323 (EPAM)
    • Crevier 2004, pp. 145-149
  90. Soar (history):
    • McCorduck 2004, pp. 450-451
    • Crevier 1993, pp. 258-263
  91. McCarthy and AI research at SAIL and SRI:
    • McCorduck 2004, pp. 251-259
    • Crevier 1993, pp. Check
  92. AI research at Edinburgh and in France, birth of Prolog:
    • Crevier 1993, pp. 193-196
    • Howe 1994
  93. AI at MIT under Marvin Minsky in the 1960s :
    • McCorduck 2004, pp. 259-305
    • Crevier 1993, pp. 83-102, 163-176
    • Russell & Norvig 2003, p. 19
  94. Cyc:
    • McCorduck 2004, p. 489, who calls it "a determinedly scruffy enterprise"
    • Crevier 1993, pp. 239−243
    • Russell & Norvig 2003, p. 363−365
    • Lenat & Guha 1989
  95. Knowledge revolution:
    • McCorduck 2004, pp. 266-276, 298-300, 314, 421
    • Russell & Norvig 2003, pp. 22-23

Bibliographia[recensere | fontem recensere]

Enchiridia A.I. maiora[recensere | fontem recensere]

  • Luger, George, et William Stubblefield. 2004. Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Ed. 5a. The Benjamin/Cummings Publishing Company, Inc. ISBN 0-8053-4780-1.
  • Nilsson, Nils. 1998. Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publishers, ISBN 978-1-55860-467-4.
  • Russell, Stuart J., et Peter Norvig. 2003. Artificial Intelligence: A Modern Approach (2nd ed.) Upper Saddle River, NJ: Prentice Hall, ISBN 0-13-790395-2.
  • Poole, David, Alan Mackworth, et Randy Goebel. 1998. Computational Intelligence: A Logical Approach. Novi Eboraci: Oxford University Press.
  • Winston, Patrick Henry. 1984. Artificial Intelligence. Reading Massachusettae: Addison-Wesley, ISBN 0-201-08259-4.

Historia A.I.[recensere | fontem recensere]

  • Crevier, Daniel. 1993. AI: The Tumultuous Search for Artificial Intelligence. New York, NY: BasicBooks, ISBN 0-465-02997-3
  • McCorduck, Pamela. 2004. Machines Who Think. (2nd ed.), Natick, MA: A. K. Peters, Ltd., ISBN 1-56881-205-1

Artes aliae[recensere | fontem recensere]

  • ACM, (Association of Computing Machinery). 1998. ACM Computing Classification System: Artificial intelligence
  • Brooks, Rodney. 1990. Elephants Don't Play Chess (PDF). Robotics and Autonomous Systems 6: 3–15, doi:10.1016/S0921-8890(05)80025-9, retrieved on 2007-08-30
  • Buchanan, Bruce G. 2005. A (Very) Brief History of Artificial Intelligence (PDF). AI Magazine, 53–60, retrieved on 2007-08-30
  • Dreyfus, Hubert. 1972. What Computers Can't Do. New York: MIT Press, ISBN 0-06-011082-1
  • Dreyfus, Hubert. 1979 What Computers Still Can't Do. New York: MIT Press.
  • Dreyfus, Hubert; Dreyfus, Stuart (1986) Mind over Machine: The Power of Human Intuition and Expertise in the Era of the Computer. Oxford, UK: Blackwell.
  • Gladwell, Malcolm (2005) Blink. New York: Little, Brown and Co., ISBN 0-316-17232-4.
  • Haugeland, John (1985) Artificial Intelligence: The Very Idea. Cambridge, Mass.: MIT Press, ISBN 0-262-08153-9.
  • Hawkins, Jeff; Blakeslee, Sandra (2004) On Intelligence. New York, NY: Owl Books, ISBN 0-8050-7853-3.
  • Hofstadter, Douglas (1979) Gödel, Escher, Bach: an Eternal Golden Braid. Hemel Hempstead: Harvester Wheatsheaf.
  • Howe, J. (2007), Artificial Intelligence at Edinburgh University: a Perspective. [1]
  • Kahneman, Daniel; Slovic, D.; Tversky, Amos (1982) Judgment under uncertainty: Heuristics and biases. New York: Cambridge University Press.
  • Kurzweil, Ray (1999) The Age of Spiritual Machines. Penguin Books, ISBN 0-670-88217-8
  • Kurzweil, Ray (2005) The Singularity is Near. Penguin Books, ISBN 0-670-03384-7
  • Lakoff, George (1987) Women, Fire, and Dangerous Things: What Categories Reveal About the Mind. University of Chicago Press. ISBN 0-226-46804-6
  • Lakoff, George; Núñez, Rafael E. (2000) Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being. Basic Books, ISBN 0-465-03771-2.
  • Lenat, Douglas; Guha, R. V. (1989) Building Large Knowledge-Based Systems. Addison-Wesley
  • Lighthill, Professor Sir James (1973) Artificial Intelligence: A General Survey. Artificial Intelligence: a paper symposium. Science Research Council
  • Lucas, John (1961) Minds, Machines and Gödel. Minds and Machines (ed. Anderson, A.R.) Englewood Cliffs: Prentice Hall.
  • McCarthy, John; Minsky, Marvin; Rochester, Nathan; Shannon, Claude (1955) A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. [2]
  • McCarthy, John; Hayes, P. J. (1969) Some philosophical problems from the standpoint of artificial intelligence. Machine Intelligence 4: 463–502
  • Minsky, Marvin (1967) Computation: Finite and Infinite Machines. Englewood Cliffs, N.J.: Prentice-Hall
  • Minsky, Marvin (2006) The Emotion Machine. New York, NY: Simon & Schusterl, ISBN 0-7432-7663-9
  • Moravec, Hans (1976) The Role of Raw Power in Intelligence. [3]
  • Moravec, Hans (1988) Mind Children. Harvard University Press
  • NRC (1999) Developments in Artificial Intelligence. Funding a Revolution: Government Support for Computing Research. National Academy Press
  • Needham, Joseph (1986) Science and Civilization in China, vol. 2. Caves Books Ltd.
  • Newell, Allen; Simon, H. A. (1963) GPS: A Program that Simulates Human Thought. Computers and Thought (ed. Feigenbaum, E.A.; Feldman, J.). McGraw-Hill
  • Newell, Allen; Simon, H. A. (1976) Computer Science as Empirical Inquiry: Symbols and Search. Communications of the ACM 19
  • Searle, John (1980) Minds, Brains and Programs. Behavioral and Brain Sciences 3 (3): 417–457
  • Searle, John (1999) Mind, language and society. New York, NY: Basic Books, ISBN 0-465-04521-9, OCLC 231867665 43689264
  • Shapiro, Stuart C. (1992) Artificial Intelligence. Encyclopedia of Artificial Intelligence (ed. Shapiro, Stuart C.; 2nd ed.). New York: John Wiley, pp. 54–57.
  • Simon, Herbert A. 1965/ The Shape of Automation for Men and Management. Novi Eboraci: Harper & Row
  • Turing, Alan. 1950. Computing Machinery and Intelligence. Mind 59 (#236) 433–460.
  • Wason, P. C. & D. Shapiro. 1966. Reasoning. New horizons in psychology (edidit B. M. Foss). Harmondsworth: Penguin
  • Weizenbaum, Joseph. 1976. Computer Power and Human Reason. San Francisco: W.H. Freeman & Company. ISBN 0-7167-0464-1.

Mille Paginae.png