Roman numeral 10000 CC DD.svg
Mille Paginae.png

Probabilitas

E Vicipaedia
Salire ad: navigationem, quaerere
Acus Buffonius π computari per probabilitatem permittit.
Triangulum Pascalis distributionem binomialem demonstrat.

Probabilitas est ea occasio in qua aliquid accidat vel sit casus. Theoria probabilitatum in chemia, mathematica, medicina, meteorologia, philosophia, ratio aeraria, scientia, statistica, aliisque disciplinis adhibetur, ut conclusiones de probabilitate eventuum potentialium et de mechanica substanti systematum complicium trahantur.

In mathematica, probabilitates semper inter 0 et 1 iacent. Eventus qui fieri not potest 0 probabilitatem habet, et eventus certus 1 habet.

Aliae regulae sunt ad quantificandam incertitudinem, sicut id Theorema Dempster-Shafer idque Theorema Possibilitatis, quae necessario sunt dissimilia nec legibus probabilitatis, ut intellectae sunt, potest conferri.

Nexus interni

Bibliographia[recensere | fontem recensere]

  • Aslangul, Claude. 2004. Mathématiques pour physiciens. Université Pierre et Marie Curie, La science à Paris.
  • Courtebras, Bernard. 2008. Mathématiser le hasard. Vuibert.
  • Kallenberg, Olav. 2002. Foundations of Modern Probability. Ed. 2a. Series in Statistics. Novi Eboraci: Springer. ISBN 0-387-95313-2.
  • Kallenberg, Olav. 2005. Probabilistic Symmetries and Invariance Principles. Novi Eboraci: Springer-Verlag. ISBN 0-387-25115-4.
  • Olofsson, Peter. 2005. Probability, Statistics, and Stochastic Processes. Wiley-Interscience. ISBN 0-471-67969-0.
  • Saporta, Gilbert. 2006. Probabilités, Analyse des données et Statistiques. Lutetiae: Éditions Technip.

Nexus externi[recensere | fontem recensere]