Roman numeral 10000 CC DD.svg
Mille Paginae.png
Latinitas nondum censa

Fluxus oneris electrici

E Vicipaedia
Salire ad: navigationem, quaerere
Electrona (caerulea, negativa) in crystallo metallico (rubro, positivo) fluentia, depicta secundum theoriam primitivam a Paulo Drude creatam. Campi electrici E ad sinistram causa, motus electronum est ad dextram velocitate vd, sed fluxio electrica I est ad sinistram.

Fluxus oneris electrici, vel etiam electricitas, dicitur motus oneris electrici propter campum electricum in medio vel spatio fluxum sinente sicut metallo. Etiam olim dicitur fluxus electricus[1], sed hodie physici fluxum oneris electrici distinguunt ab fluxu campi electrici.

Fluxio electrica vel electricitatis fluxio vel oneris electrici fluxio[2] (Symbolum usitatum: ) appellari potest mensura oneris electrici motús in spatio quodam sicut in filo conductore, [3] specialiter illa oneris electrici quantitas Q quae post punctum in conductore vel spatio per secundum temporis movit, id est [4]

Unitas metiendi[recensere | fontem recensere]

In Systemate unitiatium Internationali fluxionis electricae unitas est Amperium (-ii, n.) (symbolum: A) [5] quae ab anno 1948 definita est postulando constantem magneticum in legem Biot-Savart esse accurate

.

Est fluxio electrica constans quae, si contineatur in duobus conductoribus parallelis, longitudinibus infinitis, quorum diametros neglegere possumus, uno metro exactiter inter eos, vim in quoque conductore creet magnitudinis 2×10–7 Newtoni per metrum conductoris. [6]

Species Galvanica et alternans[recensere | fontem recensere]

Ingeniarii fluxus electrici species duas distinguunt: fluxus constans vel Galvanicus (symbolum DC ex Anglice Direct Current) et fluxus oscillatorius vel alternans (symbolum AC ex Anglice Alternating current). Societates electricae universaliter fluxu oscillatorio utuntur ad energiam per fila conductora mittendam quia hoc modo transformatoribus utendo energiae amissionem minuere possunt.

Fluxionis electricae densitas[recensere | fontem recensere]

Fluxionis electricae densitas vel simpliciter fluxionis densitas (Symbolum usitatum ) est idea a fluxione electrica distincta sed identicam rem physicam metitur, cui sunt unitatibus A/m2 in Systemate Internationali. Mathematice fluxionis densitas definita est ut vector sit qui coniunctim dat directionem fluxionis et magnitudinem oneris electrici qui currit per aream differentialem motus directione perpendicularem dI/dA sicut

Ut supra fluxionis electricae densitas aequat productum oneris electrici densitatis et velocitatis . Notandum est fluxionis densitatem intendere contrariam velocitate quando oneris densitas est negativa (ρ < 0).

Fluxio et fluxus[recensere | fontem recensere]

In physicae mathematica, rei R fluxio generaliter denotat quantum rei R fluit per temporis unitatem vel rei mutationis velocitatem, sicut

fluxio

Verbum fluxus autem denotat quantum campi vectoralis fluit per superficiem S specificatam, sicut

fluxus

ubi coniunctim dat elementum dA areae superficialis differentiale et directionem superficie perpendicularem.

Fluxionis densitatis fluxus est fluxio[recensere | fontem recensere]

Fluxio electrica aequat fluxionis electricae densitatis fluxum, ut videamus applicando theorema Gauss ad vectorem , sicut

etsi eligimus superficies S quae filum conductorem secat.

Fluxus electricus qui permaxime distinctus est[recensere | fontem recensere]

Fluxus electricus, qui campi electrici fluxum metitur, rem physicam metitur unitatibus V·m, quae permaxime a fluxione electrica distincta est. Mathematice fluxus electricus definitus est ut

Secundum legem Gauss, si specificata superficie S est clausa, fluxus electricus aequalat , ubi q est onus totum quod superficies S clausa continet et est constans electrica.

Vide etiam[recensere | fontem recensere]

Notae[recensere | fontem recensere]

  1. "De causis, quibus effectum sit, ut studium disciplinarum physicarum hac nostra aetate tantos fecerit progressus" (1863) ab Petrus Leonardus Ryke
  2. Fluxione utuntur Isaacus Newtonus et Godefridus Guilielmus Leibnitius ad derivativum respecto tempore denotandum in illo Calculo Infinitesimale; Vide fons Latine hic.
  3. Vocabula physicalia conductrum et filum inveniuntur in "Experimenta circa effectum conflictus electrici in acum magneticam," auctore Hans Christian Ørsted anno 1820.
  4. Vide pag. 208 in Introduction to Electrodynamics, 3rd ed., David J. Griffiths auctore, Prentice Hall, 1998. ISBN 0-13-805326-X.
  5. Derivatus ex nominibus physici Andreae Ampère.
  6. Vide descriptionem apud Bureau International des Poids et Mesures.