Quantum redactiones paginae "Numerus triangularis" differant

E Vicipaedia
Content deleted Content added
m -supercategoriam
Linea 46: Linea 46:


==Proprietates==
==Proprietates==
Una proprietas iucunda est: 2 numeri triangulares consecuquentes, cum sibi additi, [[numerus quadratus]] aequant. Ita, <strong><big>1+3=4, 3+6=9, 6+10=16, 10+15=25, etc.</big></strong>
Una proprietas iucunda est: 2 numeri triangulares consecuquentes, cum sibi additi, [[numerus quadratus]] aequant. Ita, 1 + 3 = 4, 3 + 6 = 9, 6 + 10 = 16, 10 + 15 = 25, etc.Hoc monstretur mathematico modo:

<!--
It is the [[binomial coefficient]]
:<math> {n+1 \choose 2}, </math>
counting the number of distinct pairs to be selected from ''n'' + 1 objects. In this form it solves the 'handshake problem': the number of handshakes if everyone in a room shakes hands with everyone else.


The sum of the n first triangular numbers is
:<math> \frac {(n)(n+1)(n+2)} {6} </math>. This is the nth [[tetrahedral number]].


One of the most famous triangular numbers is [[666 (number)|666]], also known as the [[Number of the Beast (numerology)|Number of the Beast]]. Every even [[perfect number]] is triangular, and no odd perfect numbers are known, hence all known perfect numbers are triangular.

The sum of two consecutive triangular numbers is a [[square number]]. This can be shown mathematically thus:


<br />
<br />
Linea 76: Linea 62:
<br />
<br />


Vel graphico:
Alternatively, it can be demonstrated graphically, thus:
{| cellpadding="8"
{| cellpadding="8"
|16
|16
Linea 84: Linea 70:
|[[Image:Square triangle sum 25.png]]
|[[Image:Square triangle sum 25.png]]
|}
|}
Quadrati facti duobus numeris triangularibus consequentibus aduinctis.
In each of the above examples, a square is formed from two interlocking triangles.

<!--
It is the [[binomial coefficient]]
:<math> {n+1 \choose 2}, </math>
counting the number of distinct pairs to be selected from ''n'' + 1 objects. In this form it solves the 'handshake problem': the number of handshakes if everyone in a room shakes hands with everyone else.


The sum of the n first triangular numbers is
:<math> \frac {(n)(n+1)(n+2)} {6} </math>. This is the nth [[tetrahedral number]].


One of the most famous triangular numbers is [[666 (number)|666]], also known as the [[Number of the Beast (numerology)|Number of the Beast]]. Every even [[perfect number]] is triangular, and no odd perfect numbers are known, hence all known perfect numbers are triangular.

The sum of two consecutive triangular numbers is a [[square number]]. This can be shown mathematically thus:




More generally, the difference between the nth m[[-gonal number]] and the nth (m+1)-gonal number is the (n-1)th triangular number. For example, the sixth [[heptagonal number]] (81) minus the sixth [[hexagonal number]] (66) equals the fifth triangular number, 15.
More generally, the difference between the nth m[[-gonal number]] and the nth (m+1)-gonal number is the (n-1)th triangular number. For example, the sixth [[heptagonal number]] (81) minus the sixth [[hexagonal number]] (66) equals the fifth triangular number, 15.
Linea 127: Linea 129:
See [[Tetrahedral number]] for a three dimensional version of triangular numbers. Triangular numbers and tetrahedral numbers are just two of many types of [[figurate numbers]].
See [[Tetrahedral number]] for a three dimensional version of triangular numbers. Triangular numbers and tetrahedral numbers are just two of many types of [[figurate numbers]].
-->
-->

==Vide etiam==
==Vide etiam==
* [[Numerus tetrahedronalis]] - 3-D versio numeri triangularis.
* [[Numerus tetrahedronalis]] - 3-D versio numeri triangularis.

Emendatio ex 13:24, 30 Novembris 2006

1
3
6
10
15

Numerus triangularis est numerus naturalis qui representetur a triangulo facto cum eodem numero punctorum. Omnes potest scribier quasi summa 1 + 2 + 3 + ... + n, cum n est numerus quiquam naturalis. Ergo, ordo numerorum triangularium pro ullo n  = 1, 2, 3... est

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

Cum omnis series est longior uno quam priore, perfacile visu num numerum naturalem esse summam priorum n numerorum naturalium consequentum.

Ut invenias num numerum triangularem, hac formula utere:



Aut quasi summa:



Proprietates

Una proprietas iucunda est: 2 numeri triangulares consecuquentes, cum sibi additi, numerus quadratus aequant. Ita, 1 + 3 = 4, 3 + 6 = 9, 6 + 10 = 16, 10 + 15 = 25, etc.Hoc monstretur mathematico modo:



Vel graphico:

16
25

Quadrati facti duobus numeris triangularibus consequentibus aduinctis.


Vide etiam

Nexus externi