Roman numeral 10000 CC DD.svg
Latinitas nondum censa

Copia

E Vicipaedia
Jump to navigation Jump to search
Hanc paginam intra 3 menses augere oportet. Cuique paginae opus est: textu, qui rem definit notabilitatemque eius exprimit; fonte externo certo; nexibus internis ex hac pagina et ad hanc paginam ducentibus.
Plura ... DEENFR
Haec pagina copia in re mathematica explicat. Si aliud quaeris quod etiam "Copia" appellatur, vide Copia (discretiva).

Copia[1] in mathematica est quorundam elementorum mathematicorum collectio. Secundum definitionem Georgii Cantoris, "copia est comprehensio elementorum cogitationis nostrae bene discretorum in unum". Quae definitio omni rigore mathematico carens postea substituta est axiomatis a Zermelo et Fränkel positis, quibus efficitur, ut antinomia Russelliana (de copia copiarum, quae semet ipsas non continent, num se ipsam contineat) excludatur.

In philosophia, copia dicitur obiecta abstracta.?

Denotationes et definitiones[recensere | fontem recensere]

Denotationes[recensere | fontem recensere]

  • Copiae denotari solent parenthesibus "{" et "}" usurpatis initium aut finem copiae indicentibus. Sunt duae formae copiae: una elementa enumerans, exemplo {1,2} aut {Gaius, Petrus, Marcus}. Altera elementa describens variabili vel variabilibus et sententia vel sententiis usa: Ad quae elementa sententia sequens (praedicatum) pertinet, ante symbolis : aut | notatur variabilibus in parenthesibus "(" et ")" iterum adiectis. Ergo: Si elementum huius copiae sit (id est: valet praedicatum variabili ), notatur
  • Tales solent esse in copia superiore (id est: cuncta elementa quae illi etiam huic aliis fortasse addiditis insunt). Sit talis copia superior, tum scribi solet Ut indicatur X talem esse copiam superiorem, scribi solet aut

Definitiones[recensere | fontem recensere]

  • Copia cui nulla elementa insunt vacua vel inanis appellatur. Notatur symbolis vel
  • Copiae duae eaedem vel aequae appellantur, si copiae alteri eadem elementa ac alteri copiae insunt. Aequivalens, si et . Ergo:
  • Coniunctioni duarum pluriumve copiarum omnia elementa e quaquam illarum insunt. Notatur symbolo . Ergo: Sint et
    Tum:
  • Sectioni duarum pluriumve copiarum sola ea elementa insunt, quae in unaquaquam eorum inveniuntur. Notatur symbolo . Ergo: Sint
    et Tum:
  • Differentiae duarum copiarum et elementa ex sola insunt quae copiae non insunt. Notatur symbolo \. Ergo: Sint et
    Tum:
  • Productum Cartesianum duarum copiarum et , quod cruce denotatur, est copia haec:


Definitones super descriptae visuales per diagrammata Venniana factae:

Exempla[recensere | fontem recensere]

Sint et .

Tum:

  • Licet enim elementa semel vel compluries scribere. Ne ordo quidem interest.

Aequatio aliqua ut copia describens denotari potest et solutio eius aequationis copia enumerans est. Quae saepe - praecipue in scholis - copia solutionum appellatur. Aequatio quadratica exemplo:

Notae[recensere | fontem recensere]

  1. Warning icon.svg Fons nominis Latini desideratur (addito fonte, hanc formulam remove)

Nexus interni