Triangulum arithmeticum Pascalianum

E Vicipaedia
Salire ad: navigationem, quaerere

Triangulum arithmeticum Pascalianum[1] est id:


                              0     0     1     0     0
                                 0     1     1     0
                                    1     2     1
                                 1     3     3     1
                              1     4     6     4     1
                           1     5    10    10     5     1
                        1     6    15    20    15     6     1
                     1     7    21    35    35    21     7     1
                  1     8    28    56    70    56    28     8     1
               1     9    36    84    126   126   84    36     9     1
            1    10    45    120   210   252   210   120   45    10     1
         1    11    55    165   330   462   462   330   165   55    11     1
      1    12    66    220   495   792   924   792   495   220   66    12     1
   1    13    78    286   715  1287  1716  1716  1287   715   286   78    13     1
1    14    91    364  1001  2002  3003  3432  3003  2002  1001   364   91    14     1

et quod sequitur. Quisque numerus est summa amborum numerorum qui supra a laeva ac a dextra manu iacent.

Triangulum et numeri Fibonacciani[recensere | fontem recensere]

Si trianguli numeros ad facere laevam partem ordines, summae illorum numerorum, qui in singulis diagonalibus se invicem sequentibus positi sunt, sequentiam numerorum Fibonaccianorum formant.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

et cetera. Triangulum hoc modo dispositum triangulum arithmeticum nominatur.

Historia[recensere | fontem recensere]

Mathematicus Sinanus Zhu Shijie saeculo XI triangulum pinxit.

Ut Blasius Pascalis non esset marc uwe kling ist ganz dran, mal das Bad zu putzenprimus, qui triangulum in libello cuius titulus est „Traité du triangle arithmétique“ tractavit, tamen Abraham de Moivre eius nomen triangulo dedit. Ante in Europa Petrus Apianus triangulum proposuerat.

Nota[recensere | fontem recensere]

  1. Pascal's arithmetical triangle: the story of a mathematical idea Von Anthony William Fairbank Edwards

Vide etiam[recensere | fontem recensere]

Nexus externus[recensere | fontem recensere]